培訓(xùn):高中、中考、高考、藝考、高三復(fù)讀
高中數(shù)學(xué)解析幾何和立體幾何都需要大家在畫圖看圖方面有足夠的能力,如果空間想象能力不夠,不會畫輔助線,很多題都沒法解決。而在高考中立體幾何解析幾何除了有填空簡答之外還有兩道大題,這些題不會做,高考數(shù)學(xué)就不可能得高分。
1.平行、垂直位置關(guān)系的論證的策略:
(1)由已知想性質(zhì),由求證想判定,即分析法與綜合法相結(jié)合尋找證題思路。
(2)利用題設(shè)條件的性質(zhì)適當(dāng)添加輔助線(或面)是解題的常用方法之一。
(3)三垂線定理及其逆定理在高考題中使用的頻率最高,在證明線線垂直時應(yīng)優(yōu)先考慮。
2.空間角的計算方法與技巧:
主要步驟:一作、二證、三算;若用向量,那就是一證、二算。
(1)兩條異面直線所成的角①平移法:②補形法:③向量法:
(2)直線和平面所成的角
①作出直線和平面所成的角,關(guān)鍵是作垂線,找射影轉(zhuǎn)化到同一三角形中計算,或用向量計算。
②用公式計算.
(3)二面角
①平面角的作法:(i)定義法;(ii)三垂線定理及其逆定理法;(iii)垂面法。
②平面角的計算法:
(i)找到平面角,然后在三角形中計算(解三角形)或用向量計算;(ii)射影面積法;(iii)向量夾角公式.
點擊查看:數(shù)學(xué)答題技巧及常用解題方法
3.空間距離的計算方法與技巧:
(1)求點到直線的距離:經(jīng)常應(yīng)用三垂線定理作出點到直線的垂線,然后在相關(guān)的三角形中求解,也可以借助于面積相等求出點到直線的距離。
(2)求兩條異面直線間距離:一般先找出其公垂線,然后求其公垂線段的長。在不能直接作出公垂線的情況下,可轉(zhuǎn)化為線面距離求解(這種情況高考不做要求)。
(3)求點到平面的距離:一般找出(或作出)過此點與已知平面垂直的平面,利用面面垂直的性質(zhì)過該點作出平面的垂線,進(jìn)而計算;也可以利用“三棱錐體積法”直接求距離;有時直接利用已知點求距離比較困難時,我們可以把點到平面的距離轉(zhuǎn)化為直線到平面的距離,從而“轉(zhuǎn)移”到另一點上去求“點到平面的距離”。求直線與平面的距離及平面與平面的距離一般均轉(zhuǎn)化為點到平面的距離來求解。
4.熟記一些常用的小結(jié)論,諸如:正四面體的體積公式是;面積射影公式;“立平斜關(guān)系式”;最小角定理。弄清楚棱錐的頂點在底面的射影為底面的內(nèi)心、外心、垂心的條件,這可能是快速解答某些問題的前提。
5.平面圖形的翻折、立體圖形的展開等一類問題,要注意翻折前、展開前后有關(guān)幾何元素的“不變性”與“不變量”。
6.與球有關(guān)的題型,只能應(yīng)用“老方法”,求出球的半徑即可。
7.立體幾何讀題:
(1)弄清楚圖形是什么幾何體,規(guī)則的、不規(guī)則的、組合體等。
(2)弄清楚幾何體結(jié)構(gòu)特征。面面、線面、線線之間有哪些關(guān)系(平行、垂直、相等)。
(3)重點留意有哪些面面垂直、線面垂直,線線平行、線面平行等。
以上就是長春博大教育為您提供高中數(shù)學(xué)幾何解題方法技巧的全部內(nèi)容,更多內(nèi)容請進(jìn)入學(xué)習(xí)資料 查看